16,874 research outputs found

    Critical Discourse Analysis of News Discourse

    Get PDF
    News discourse is one of main analysis subjects of critical discourse analysis. People can know the opinions implied by the author and grasp the real situation of the events described in the discourse by critical discourse analysis. Furthermore, it is beneficial for the audience to establish the critical awareness of News discourse and enhance the ability to critically analyze news discourse. Based on the discussion of the concept of news discourse and critical discourse analysis, the theoretical foundations and steps of critical discourse analysis, the paper illustrates the method of the critical analysis of news discourse. The author also puts forward issues that needed to pay attention to in order to improve the ability of news discourse analysis

    Distinguishing RBL-like objects and XBL-like objects with the peak emission frequency of the overall energy spectrum

    Full text link
    We investigate quantitatively how the peak emission frequency of the overall energy spectrum is at work in distinguishing RBL-like and XBL-like objects. We employ the sample of Giommi et al. (1995) to study the distribution of BL Lacertae objects with various locations of the cutoff of the overall energy spectrum. We find that the sources with the cutoff located at lower frequency are indeed sited in the RBL region of the αroαox\alpha_{ro}-\alpha_{ox} plane, while those with the cutoff located at higher frequency are distributed in the XBL region. For a more quantitative study, we employ the BL Lacertae samples presented by Sambruna et al. (1996), where, the peak emission frequency, νp\nu _p, of each source is estimated by fitting the data with a parabolic function. In the plot of αrxlogνp\alpha_{rx}-\log \nu_p we find that, in the four different regions divided by the αrx=0.75\alpha_{rx}=0.75 line and the logνp=14.7\log \nu_p=14.7 line, all the RBL-like objects are inside the upper left region, while most XBL-like objects are within the lower right region. A few sources are located in the lower left region. No sources are in the upper right region. This result is rather quantitative. It provides an evidence supporting what Giommi et al. (1995) suggested: RBL-like and XBL-like objects can be distinguished by the difference of the peak emission frequency of the overall energy spectrum.Comment: 7 pages, 2 figure

    A Causal And-Or Graph Model for Visibility Fluent Reasoning in Tracking Interacting Objects

    Full text link
    Tracking humans that are interacting with the other subjects or environment remains unsolved in visual tracking, because the visibility of the human of interests in videos is unknown and might vary over time. In particular, it is still difficult for state-of-the-art human trackers to recover complete human trajectories in crowded scenes with frequent human interactions. In this work, we consider the visibility status of a subject as a fluent variable, whose change is mostly attributed to the subject's interaction with the surrounding, e.g., crossing behind another object, entering a building, or getting into a vehicle, etc. We introduce a Causal And-Or Graph (C-AOG) to represent the causal-effect relations between an object's visibility fluent and its activities, and develop a probabilistic graph model to jointly reason the visibility fluent change (e.g., from visible to invisible) and track humans in videos. We formulate this joint task as an iterative search of a feasible causal graph structure that enables fast search algorithm, e.g., dynamic programming method. We apply the proposed method on challenging video sequences to evaluate its capabilities of estimating visibility fluent changes of subjects and tracking subjects of interests over time. Results with comparisons demonstrate that our method outperforms the alternative trackers and can recover complete trajectories of humans in complicated scenarios with frequent human interactions.Comment: accepted by CVPR 201
    corecore